首页> 外文OA文献 >Lifted system iterative learning control applied to an industrial robot
【2h】

Lifted system iterative learning control applied to an industrial robot

机译:提升系统迭代学习控制在工业机器人中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a model-based iterative learning control algorithm for time-varying systems with a high convergence speed. The convergence of components of the tracking error can be controlled individually with the algorithm. The convergence speed of each error component can be maximised unless robustness for noise or unmodelled dynamics is needed. The learning control algorithm is applied to the industrial Stäubli RX90 robot. A linear time-varying model of the robot dynamics is obtained by linearisation of the non-linear dynamic equations. Experiments show that the tracking error of the robot joints can be reduced to the desired level in a few iterations.
机译:提出了一种具有高收敛速度的时变系统基于模型的迭代学习控制算法。跟踪误差分量的收敛可以用该算法单独控制。除非需要鲁棒的噪声或未建模的动力学,否则每个误差分量的收敛速度都可以最大化。学习控制算法应用于工业史陶比尔RX90机器人。通过将非线性动力学方程线性化,可以获得机器人动力学的线性时变模型。实验表明,通过几次迭代,可以将机器人关节的跟踪误差降低到所需水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号